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Preface

The material in this technical report is a chapter from the book entitled High Performance Visualization—
Enabling Extreme Scale Scientific Insight [2], published by Taylor & Francis, and part of the CRC
Computational Science series.
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1 Introduction

The process of creating an image from the data, as the last step before display, in the visualization
pipeline is called rendering; this is a key aspect of all high performance visualizations. The render-
ing process takes data resulting from visualization algorithms and generates an image for display.
This figure highlights that data is typically filtered, transformed, subsetted and then mapped to
renderable geometry before rendering takes place. There are two forms of rendering typically used
in visualization, based on the underlying mapped data: rendering of geometry generated through
visualization mapping algorithms and direct rendering from the data. For geometric rendering, typ-
ical high performance visualization packages use the OpenGL library, which converts the geometry
generated by visualization mapping algorithms to colored pixels through rasterization [37]. Another
method for generating images from geometry is ray tracing, where rays from the viewpoint through
the image pixels, are intersected with geometry to form the colored pixels [36]. Direct rendering
does not require an intermediate mapping of data to geometry, but rather, it directly generates the
colored pixels through a mapping that involves sampling the data and for each sample, mapping
the data to renderable quantities (color and transparency). Direct volume rendering is a common
technique for rendering scalar fields directly into images.

The rest of this report will discuss a rendering taxonomy that is widely used in high performance
visualization systems. Geometric rendering is then presented with examples of both rasterization
and ray tracing solutions. Direct volume rendering is introduced. And finally, an example of a
geometric rendering system is discussed, using ray tracing on a commodity cluster.

2 Rendering Taxonomy

In 1994, Molnar et al. described a taxonomy of parallel rasterization graphics hardware that has
become the basis for most parallel implementations—both hardware and software based—and is
widely used in high performance visualization systems [26]. While the taxonomy describes different
forms of graphics hardware, the generalization of the taxonomy provides the basis for most software-
based and GPU-based parallel rendering systems for both rasterization rendering and direct volume
rendering.

The taxonomy describes three methods for the parallelization of graphics hardware performing
rasterization, based on when the assignment to the image space (sometimes called screen-space)
takes place. If one considers the rasterization process of consisting of two basic steps, geome-
try processing and rasterization (the generation of pixels from the geometry), then the sort (the
assignment of data, geometry, or pixels), to image space can occur at three points.

As shown in the left of Figure 1, geometric primitives can be assigned to screen-space before
geometry processing takes place. This is called sort-first. Since geometry processing involves the
transformation of the geometry to image space, this requires a priori information about the geom-
etry and the mapping to image space. Such a priori information can be obtained from previously
rendered frames, heuristics, or by simply replicating the data among all parallel processes. The
image space is divided into multiple tiles, each of which can be processed in parallel. Since the
geometry is assigned to the appropriate image space tile, geometry processing, followed by rasteri-
zation, generates the final colored pixels of the image. This process can be conducted in parallel by
each of the processors responsible for a particular image tile. The advantage of sort-first methods is
that image compositing is not required, since subregions of the final image are defined uniquely. The
disadvantage is that, without data replication or heuristics, the assignment of data to the appro-
priate image space subregion is difficult. Sort-first methods typically leverage the frame-to-frame
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coherency, which is often readily available in interactive applications.

Figure 1: The rendering taxonomy based on Molnar’s description. Left most is sort-first, the center
is sort-middle, while the right most is sort-last.

Sort-middle architectures perform the sort to image space, after geometry processing, but before
rasterization. As in sort-first, the image is divided into tiles and each rasterization processor is
responsible for a particular image tile. Geometry is processed in parallel by the multiple geometry
processors that obtain geometry in some manner, such as round-robin distribution. One of the
steps of geometry processing is the transformation of the geometry to image space. The image
space geometry is sorted and sent to the appropriate rasterization processor responsible for the
image space partition covered by the processed geometry. While common in graphics hardware,
high performance visualization systems typically use either sort-last or sort-first methodology for
parallel rendering.

The right-most image in Figure 1 shows the sort-last technique. In this method, geometry
is distributed to geometry processors, in some manner, such as round-robin distribution. Each
processor in parallel transforms the geometry to image space and then, rasterizes the geometry to
a local image. The rasterizer generates the image pixels. Note that depending on the geometry,
the pixels may cover an entire image, or more typically, a small portion of the image. After all the
geometry has been processed and rasterized, the resulting partial images are combined, through
compositing. The advantage of the sort-last method is that renderable entities, geometry, or data
can be partitioned among the parallel processors and the final image is constructed through parallel
compositing. The disadvantage is that the compositing step can dominate the image generation
time. Sort-last methods are the most common found in high performance visualization and are
part of the VisIt and ParaView distributions.

3 Rendering Geometry

As described above, one method for visualization involves mapping the data to geometry, such as
an isosurface or an intermediate representation, such as spheres, and then rendering the geometry
into an image for display. The send-geometry method generates such geometry for rendering on a
client. The rendering can be performed either serially, or in parallel and in either software or more
typically through GPU hardware. The most common rasterization library for performing this task
is the OpenGL library. OpenGL is an industry standard graphics API, with render implementations
supporting GPU, or hardware-accelerated rendering. There is a long history of research in parallel
and distributed geometry rasterization, focusing on both early massively parallel processors (MPP)
and clusters of PCs.
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Crockett and Orloff [10] describe a sort-middle parallel rendering system for message-passing
machines. They developed a formal model to measure the performance and they were one of the
first to use MPPs for parallel rendering. In comparison, Ortega et al. [31] introduce a data-parallel
geometry rendering system using sort-last compositing. This implementation allowed integrated
geometry extraction and rendering on the CM5 and was targeted for applications, which required
extremely fast rendering for extremely large sets of polygons. The rendering toolkit enables the
display of 3D shaded polygons directly from a parallel machine, avoiding the transmission of huge
amounts of geometry data to a post-processing rendering system over the then slow networks.
Krogh et al. [21] present a parallel rendering system for molecular dynamics applications, where the
massive particle system is represented as spheres. The spheres are rendered with depth-enhanced
sprites (screen aligned textures) and the results are composited with sort-last compositing. This
system avoids rasterization by the use of sprites.

Correa et al. [8] present a technique for the out-of-core rendering of large models on cluster-
based tiled displays, using sort-first. In their study, a hierarchical model is generated in a pre-
process and at runtime, each node renders an image-tile in a multi-threaded manner, overlapping
rendering, visibility computation, and disk operations. By using 16 nodes, they were able to
match the performance of the, at the time, current high-end graphics workstations. Samanta et
al. [35] introduce k-way replication for sort-first rendering where geometry is only replicated on
k out of n nodes with k being much smaller than n. This small replication factor avoids the
full data replication, typically required for sort-first rendering. It also supports rendering large-
scale geometry, where the geometry can be larger than the memory capacity of an individual
node. It simultaneously reduces communication overheads by leveraging frame-to-frame coherence,
but allowing a dynamic, view-dependent partitioning of the data. The study found that parallel
rendering efficiencies, achieved with small replication factors were, similar to the ones measured
with full replication. VTK and VisIt use the Mesa OpenGL library, which implements the OpenGL
API in software, to enable parallel rendering through sort-last compositing. Rendering, with either
VisIt or Paraview, scales well on GPU clusters using hardware rendering and sort-last compositing,
but they are bounded by the composite time for the image display. When using Mesa, the rendering
is not scalable or interactive, due to the rasterization speed; though, replacing rasterization with
ray tracing can improve the scalability of software rendering [5].

An alternative to rasterization for high performance visualization is to render images using ray
tracing. Ray tracing refers to tracing rays from the viewpoint, through pixels, and intersecting the
rays with the geometry to be rendered. There have been several parallel ray tracing implementations
for high performance visualization. Parker et al. [32] implement a shared-memory ray-tracer, RTRT,
which performs interactive isosurface generation and rendering on large shared-memory computers,
such as the SGI Origin. This proves to be effective for large data sets, as the data and geometry
are accessible by all processors. Bigler et al. [3] demonstrate the effectiveness of this system on
large-scale scientific data. They extend RTRT to use various methods in order to visualize the
particle data, from simulations using the material point method, as spheres. They also describe
two methods for augmenting the visualization using silhouette edges and advanced illumination,
such as ambient occlusion. In Section 5, there are details about how to accelerate ray tracing for
large amounts of geometry on distributed-memory platforms, like commodity clusters.

4 Volume Rendering

Direct volume rendering methods generate images of a 3D volumetric data set, without explicitly
extracting geometry from the data [13, 22]. Conceptually, volume rendering proceeds by casting
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rays from the viewpoint through pixel centers as shown in Figure 2. These rays are sampled where
they intersect the data volume. Volume rendering uses an optical model to map sampled data
values to optical properties, such as color and opacity [25]. During rendering, optical properties are
accumulated along each viewing ray to form an image of the data, as shown in Figure 3. Although
the data set is interpreted as a continuous function in space, for practical purposes it is represented
as a discrete 3D scalar field. The samples typically are trilinearly interpolated data values from the
3D scalar field. On a GPU, the trilinear interpolation is performed in hardware and, therefore, is
quite fast. Samples along a ray can be determined analytically, as in ray marching [36], or can be
generated through proxy geometry on a GPU [15].

Viewpoint

Image

Pixel

Volume

Samples

Figure 2: Ray casting for volume rendering.

In the quest towards interactivity and towards addressing the challenges posed by growing data
size and complexity, there has been a great deal of work over the years on parallel volume visual-
ization (see Kaufman and Mueller [18] for an overview). Volume rendering is easily parallelized,
though care must be taken to achieve effective results. Typically, the 3D scalar field is partitioned
into sub-volumes, which are assigned to the parallel nodes. Volume rendering can take place asyn-
chronously, within the parallel nodes. Also, volume rendering synchronizes compositing between
the parallel nodes, forming the final image.

The TREX system [20] is a parallel volume rendering application for shared-memory platforms
that uses object-parallel data domain decomposition and texture-based, hardware-accelerated ren-
dering, followed by a parallel, software-based composition phase with image space partitioning.
TREX can map different portions of its pipeline to different system components on the SGI Ori-
gin; those mappings are intended to achieve optimal performance at each algorithmic stage and to
achieve minimal inter-stage communication costs.

Muraki et al. [29] describe a custom hardware-based compositing system linking commodity
GPUs used for volume rendering. They implemented a cluster composed of two 8-node systems
that are linked by multiple networks. While the CPUs are used for volume processing, the GPUs
are used for volume rendering and, custom compositing hardware forms the final image in a sort-last
manner. Müller et al. [28] implement a ray casting volume renderer with object-order partitioning
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Figure 3: Volume rendering overview. The volume is sampled, samples are assigned optical proper-
ties (RGB, α). The different properties are shaded and composited to form the final image. Image
courtesy of Charles Hansen (University of Utah).

on a small 8-node GPU cluster, using programmable shaders. This system sustains frame rates
in the single digits for data sets, as large as 12603 with an image size of 1024 × 768 pixels. More
recently, Moloney et al. [27] implement a GLSL, texture-based volume renderer that runs on a
32-node GPU system. This work takes advantage of the sort-first architecture to accelerate certain
types of rendering, like occlusion culling.

Peterka et al. [33] discuss end-to-end performance of parallel volume rendering on an IBM Blue
Gene distributed-memory parallel architecture. They explore the system performance in terms of
rendering, compositing and disk I/O. The system employs sort-last compositing using direct-send
compositing. Their system was useful for very large data sets that could not be accommodated by
GPU clusters and could produce frame times on the order of a few seconds for such data.

Yu et al. [41] describe an in situ parallel volume rendering implementation. The data partition-
ing is used directly from the domain decomposition for the corresponding simulation. Rendering
combines both rasterization for geometry, representing particles, and volume rendering of the as-
sociated scalar field. Sort-last compositing, using 2-3 swap, was employed to form the final image.
Their system tightly linked the visualization with the simulation and scaled to 15,360 cores.

Childs et al. [7] present a parallel volume rendering scheme for massive data sets (with one
hundred million unstructured elements and a 30003 rectilinear data set). Their approach parallelizes
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over both input data elements and output pixels, which is demonstrated to scale well on up to 400
processors.

A hybrid approach to parallel volume rendering, which makes use of a design pattern common
in many parallel volume rendering applications, uses a mixture of both object- and pixel-level
parallelism [1, 23, 24, 38] The design employs an object-order partitioning that distributes source
data blocks to processors where they are then rendered using ray casting [13, 22, 34, 39]. Within a
processor, an image space decomposition is used, similar to Nieh and Levoy [30], to allow multiple
rendering threads to cooperatively generate partial images that are later combined via compositing
into a final image [13, 22, 39]. This hybrid design approach, which uses a blend of object- and
pixel-level parallelism, has proven successful in achieving scalability and tackling large data sizes.

5 Real-Time Ray Tracer for Visualization on a Cluster

While the core ray tracing algorithm might be embarrassingly parallel, scaling a ray tracer to render
millions of pixels at real-time frame rates on a cluster remains challenging. It is even more so if the
individual nodes do not have enough memory to contain all the data and associated ray tracing
acceleration structures (such as octrees or bounding volume hierarchies). The ability to render
high-resolution images at interactive or real-time rates is important when visualizing data sets
that contain information at the subpixel level. Since most commodity monitors are now capable
of displaying at least a two megapixel HD resolution of 1920 × 1080, and higher end models can
display up to twice that many pixels, it is important to make use of all those pixels when visualizing
a data set. Current distributed ray tracing systems are not able to approach interactive rates for
such pixel counts, regardless of how many compute nodes are used. Either lower resolutions are
required for real-time rates, or less fluid frame rates are used in order to scale to larger image sizes.
This section describes a distributed ray tracing system developed by Ize et al. that can scale, on an
InfiniBand cluster, to real-time rates of slightly over 100fps, at full HD resolution, or 50–60fps at 4
megapixels with massive polygonal models [16]. The system uses sort-first parallelism, where the
image is divided into tiles, but rather than pre-sort and assign geometry to nodes, the geometry is
dynamically cached to the appropriate node taking advantage of frame-to-frame coherence.

Such a system can also handle massive out-of-core models that cannot reside inside the physical
memory of any individual compute node by implementing a read-only distributed shared memory
ray tracer [9] which is essentially a distributed cache (DC). The DC supports the use of any desired
ray tracing shading models, such as shadows, transparent surfaces, ambient occlusion and even full
path tracing. More advanced shading models than simple ray casting or rasterization allow for
more productive and useful visualizations [14].

Ize et al. implemented their distributed ray tracer on the Manta Interactive Ray Tracer, a
state-of-the-art ray tracer capable of scaling at real-time frame rates to hundreds of cores on a
shared-memory machine [4]. They faced the challenge of ensuring that the distributed Manta
implementation was able to scale to many nodes while also ensuring real-time frame rates.

The two main challenges of a real-time distributed ray tracing system are load balancing and
ensuring the display is not a bottleneck. The real-time distributed ray tracer uses a master-slave
configuration where a single process, the display, receives pixel results from render processes running
on the other nodes. Another process, the load balancer, handles assigning tasks to the individual
render nodes.

MPI does not guarantee fairness amongst threads in a process and the MPI library, in their
implementation, forces all threads to go through the same critical section. Because of this, the
display and load balancer were run as separate processes. Since they do not communicate with
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each other, nor do they share any significant state, this partitioning can be done without penalty
or code complexity. Furthermore, since the load balancer has minimal communication, instead of
running on a dedicated node, it can run alongside the display process without noticeably impacting
overall performance.

5.1 Load Balancing

Manta uses a shared-memory dynamic load balancing work queue, where each thread is stati-
cally given a predetermined large tile of work to consume and then, when it needs more work, it
progressively requests smaller tiles until there is no more work left. Ize et al. extended Manta’s
shared-memory load balancer to distributed memory, using a master dynamic load balancer with
a work queue comprised of large tiles, which are given to each node (the first assignment is done
statically and is always the same) and then each node has its own work queue where it distributes
sub-tiles to each render thread. Inside each node, the standard Manta shared-memory load bal-
ancer distributes work amongst the threads. Each thread starts with a few statically assigned ray
packets to render and then takes more ray packets from the node’s shared work queue until no
more work is available, at which point that thread requests another tile of work from the master
load balancer for the entire node to consume. This approach effectively provides a two-level load
balancer ensures that work is balanced both at the node level and at the thread level. Since the
top level load balancer only needs to keep the work queues of the nodes full, instead of the queues
for each individual thread, communication is kept low on the top level load balancer, which allows
the system to scale to many nodes and cores.

5.2 Display Process

One process, the display, is dedicated to receiving pixels from the render nodes and placing those
pixels into the final image. The display process shares a dedicated node with the load balancer
process, which only uses a single thread and has infrequent communication. The display has one
thread, which only receives the pixels from the render nodes into a buffer. The other threads in the
display then take those pixels and copy them into the relevant parts of the final image. At first, Ize
et al. used only a single thread to do both the receiving and copying to the final image, but they
found that the maximum frame rates were significantly lower than what the InfiniBand network
should be capable of. Surprisingly, it turned out that merely copying data into the local memory
was introducing a bottleneck; and, for this reason, they employed several cores to do the copying.

Since InfiniBand packets are normally 2KB, any messages smaller than this 2KB will still
consume 2KB of the network bandwidth. Therefore, it is necessary to send a full packet of pixels
to maximize frame rate. If, for instance, one sends only a single seven-byte pixel at a time, it
would actually require sending an effective 2048× 1920× 1080 = 3.96GB of data, taking about two
seconds over the high speed network, which is clearly too slow. Since ray packets contain 64 pixels,
combining 13 ray packets into a single message offers the best performance, since it uses close to
three full InfiniBand packets.

5.3 Distributed Cache Ray Tracing

The distributed cache infrastructure is similar to that of DeMarle et al. [12]. Data is distributed
among nodes in an interleaved pattern. A templated direct-mapped cache is used for data that does
not exist locally. Data is accessed at a block granularity of almost 8KB, with a little bit of space
left for packet/MPI overhead, which results in each block containing 254 32-byte Bounding Volume
Hierarchy (BVH) nodes or 226 36-byte triangles. Since multiple threads can share the cache, each
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cache line is controlled by a mutex so that multiple threads can simultaneously read from a cache
line. In order to replace the data in a cache line, a thread must have exclusive access to that cache
line so that when it replaces the cache element, it does not modify data that is being used by
other threads. Remote reads are performed using a passive MPI Get operation, which should, in
turn, use an InfiniBand RDMA read to efficiently read the memory from the target node without
any involvement of the target CPU. This approach allows for very fast remote reads, which do not
impact performance on the target node and that scale to many threads and MPI processes [17].

DeMarle et al. assign block k to a node number k mod numNodes, so that blocks are interleaved
across a distributed memory. If a node owns block k, it will then place it in location k/numNodes
of its resident memory array [11]; Ize et al. follow this convention. However, if a node does not own
block k, the node places a copy of the block in its k mod cacheSize cache line. Ize et al. found this
to be an inefficient mapping, because it does not make full utilization of the cache, as it does not
factor in that some of the data might already reside in the node’s resident memory. For instance,
suppose, there are 2 nodes and the cache size is also 2, then node 0 will never be able to make use
of cache line 0. When k mod 2 = 0, then the owner of the data is k/2 = 0, which means that node
0 already has that data in its resident memory. A more efficient mapping that avoids the double
counting is: (

k −
⌊
k + (numNodes−myRank)

numNodes

⌋)
mod cachSize.

Ray casting the Richtmyer–Meshkov data set (Fig. 4) with 60 nodes and more efficient mapping
gives speedups of 1.16×, 1.31×, 1.48×, 1.46×, and 1.31× over the mapping of DeMarle et al. The
respective cache sizes are 1/32, 1/8, 1/4, 1/2, and 1/1 of total memory, respectively.

5.3.1 DC BVH

Since the DC manager groups BVH nodes into blocks, Ize et al. reorder the memory locations of
the BVH nodes so that the nodes in a block are spatially coherent in memory. Note, they are
not reordering the actual BVH tree topology. They accomplish this coherency for a block size of
B, BVH nodes by writing the nodes to memory according to a breadth first traversal of the first
B nodes, thus creating a subtree that is coherent in memory. They then stop the breadth first
traversal and instead recursively repeat that process for each of the B leaves of the newly formed
subtree. If the subtree being created ends up with less than B leaves, it continues to the next
subtree without introducing any gaps in the memory layout. It is therefore possible for a block to
contain multiple subtrees. However, since the blocks are written according to a blocked depth-first
traversal, the subsequent subtree will still often be spatially near the previous subtree.

In order to minimize memory usage, Manta’s BVH nodes only contain a single child pointer
rather than two, with the other child’s memory location being adjacent to the first child. Because
of this, the algorithm above recurses on each pair of child leaves, so that the two children stay
adjacent in memory, rather than recursing on each of the B leaves.

Thus, the spatially coherent blocks contain mostly complete subtrees of B nodes so that when
a block is fetched, one can usually expect to make logB traversals before a new block must be
fetched from the DC manager. For 254 node blocks, this is about eight traversal steps for which
the DC-BVH traversal performance should be roughly on par with the regular BVH traversal. Eight
traversal steps are ensured by keeping track of the current block and not releasing that block (or
re-fetching it) until either the traversal leaves the block or enters a new block. When the traversal
enters a new block it must release the previously held block in order to prevent a deadlock condition
where one of the following blocks requires the same cache line as the currently held block. Note,
all multiple threads can safely share access to a block and thread stalling, while waiting for a block
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to be released, will only occur if one thread needs to use the cache line for a different block than is
currently being held.

Since the root of the tree will be traversed by every thread in all nodes, rather than risk this data
being evicted and then having to stall while the data becomes available again, the corresponding
spatially coherent block is replicated across all nodes. Replication requires only an extra 8KB of
data per node and ensures that those first 8 traversal steps are always fast because they only need
to access resident memory.

Figure 4: On 60 nodes, the system can ray cast (left image) a 316M triangle isosurface from
timestep 273 of a Richtmyer–Meshkov (RM) instability calculation, in HD resolution, at 101fps,
with replicated data, 21,326MB of triangles and acceleration structures, and at 16fps if the DC is
used to store only 2,666MB per node. Using one shadow ray or 36 ambient occlusion rays per pixel
(right image) the system can achieve 4.76fps and 1.90fps, respectively. Image source: Ize et al. [16].

5.3.2 DC Primitives

While sharing vertices using a mesh will often halve the memory requirements, shared vertices do
not map well to the DC since shared vertices require fetching a block from the DC manager to find
the triangle and then once the vertex indices are known, one to three more fetches for the vertices.
Thus, a miss results in between a 2×–4× slowdown for misses. Doubling the storage requirements
is comparable in cost to halving the cache size, and halving the cache size empirically introduces
less than a 2× performance penalty. Although DeMarle et al. used a mesh structure, Ize et al. did
not. While it might appear that one could create a sub-mesh within each block so that less memory
is used and only a single block need be fetched, due to a fixed block size, there will be wasted empty
space inside each block. Attempting to place variable numbers of triangles in each block, so that
empty space is reduced, it will also not work since then, it will not be possible to compute which
block key corresponds to which triangle.

Ize et al. reorder the triangles into blocks by performing an in-order traversal of the BVH and
outputting triangles into an array as they are encountered. This results in spatially coherent blocks
that also match the traversal pattern of the BVH so that, if two leaf nodes share a recent ancestor,
they are also spatially coherent and will likely have their primitives residing in the same block.

5.4 Results

Ize et al. use a 64 node cluster where each node contains two 4-core Xeon X5550s running at
2.67GHz, with 24GB of memory, and a 4× DDR InfiniBand interconnect between the nodes.
All scenes are rendered at an HD resolution of 1920 × 1080 pixels. The data sets consist of a
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316M triangle isosurface, computed from one timestep of a Richtmyer–Meshkov (RM) instability
calculation (see Fig. 4) and the 259M triangle Boeing 777 CAD model (see Fig. 5). While the
RM data set can be rendered using volume ray casting, this polygonal representation is used as an
example of a massive polygonal model, where large parts of the model can be seen from one view.
The Boeing data set consists of an almost complete CAD model for the entire aircraft and, unless
it were made transparent, has significant occlusion so that regardless of the view, only a fraction
of the scene can be viewed at any given time.

Figure 5: On 60 nodes, the 259M triangle Boeing data set using HD resolution can be ray cast
(left image) at 96fps if all 15,637MB of triangle and acceleration structure data are replicated on
each node and at 77fps if DC is used to store only 1,955MB of data and cache per node. Using 36
ambient occlusion rays per pixel (right image) the system achieves 1.46fps. Image source: Ize et
al. [16].

In the study, scaling was reported where both data sets were rendered using two to sixty nodes,
with one node used for display and load balancing, and the remaining nodes used for rendering.
Simple ray casting was used for both models and ambient occlusion with 36 samples per shading
point for the Boeing data set and a similar ambient occlusion, but with additional hard shadows
for the RM data set.

Figure 6 shows how the system scales with increasing numbers of nodes—when ray casting both
scenes—using replicated data across each node so that the standard BVH acceleration structure is
used without any DC overhead. Then, a cache plus resident set size, 1/N , of the total memory is
used by the data set and acceleration structure. Assuming the nodes have enough memory, data
replication allows the system to achieve near linear scaling to real-time rates and then begins to
plateau as the rendering rate approaches 100fps. Since 1/1 has a cache large enough to contain
all the data, no cache misses ever occur. As the cache is decreased in size, the rendering speed
of the Boeing data set is not significantly impacted; indicating that the system was able to keep
the working set fully in cache. The RM data set, on the other hand, has a larger working set,
since more of it is in the view frustum, which causes cache misses to occur, and noticeably affects
performance.

The total amount of memory required in order to keep data in-core depends on the cache size
and the resident set size. On a single render node, all the data must be resident. For the RM data
set, the resident set is 21GB and the cache is 0GB. Figure 7 shows that with more render nodes
the size of the resident set becomes progressively smaller so that the cache size quickly becomes
the limiting factor as to how much data the system can handle. Since the resident set decreases as
more nodes are added, cache size can similarly be increased so that the node’s capabilities are used
to the fullest.
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5.5 Maximum Frame Rate

Frame rate is limited by the cost of transferring pixels across the network to the display process.
The 4×DDR InfiniBand interconnect has a measured bandwidth of 1868MB/s when transferring
multiples of 2KB of data according to the system supplied ib read bw tool. Each pixel sent across
consists of a 3 byte RGB color and a 4 byte pixel location. The 4 bytes used for the location
is required in order to support rendering modes where pixels in a ray packet could be randomly
distributed about the image, for instance, with frameless rendering. The 4 byte location can be
removed if the rays within a ray packet form a rectangular tile, in which case it is only necessary to
store the coordinates of the rendered rectangle over the entire ray packet instead of 4 bytes per ray.
Further improvements might be obtained by compressing the pixels so that even less data needs to
be transmitted. The time required by the display process to receive all the pixels from the other
nodes is at best 1920∗1080∗7B

1868MB/s = 7.41ms for a full HD image, which is an upper limit of 135fps. Since

13 ∗ 64 = 832 pixels are sent at a time, which occupies 95% of the InfiniBand packet, one would
expect the implementation to achieve at best 127fps.

To see how close the system can approach the maximum frame rate by testing the system
overhead, an HD image is rendered from a small model with the camera pointing away from the
model, producing a blank screen and requiring only a minimal amount of ray tracing. To verify that
the load balancer is not significantly competing for resources, the system is tested with the load
balancer on its own dedicated node, and then, with the load balancer sharing the node with the
display process. The render nodes thus have a limited amount of work to perform and the display
process quickly becomes the bottleneck. Figure 8 shows that when using one thread to receive the
pixels and another to copy the pixels from the receive buffer to the image, the maximum frame rate
is 55fps, no matter how many render threads and nodes being used. Using two threads to copy the
pixels to the image results in up to a 1.6× speedup, three copy threads improves performance by up
to 2.3×, but additional copy threads offer no additional benefit, demonstrating that copying is the
bottleneck until three copy threads are used, after which the receive thread becomes the bottleneck
since it is not able to receive the pixels fast enough to keep the copy threads busy. When around 18
threads are being used, be they on a few nodes or many nodes, the system can obtain a frame rate
of 127fps. This is exactly the expected maximum of 127fps given by the amount of time it takes to
transmit all the pixel data across the InfiniBand interconnect. More render threads result in lower
performance due to the MPI implementation not being able to keep up with the large volume of
communication. In order to achieve the results required, the MPI implementation must be tuned
to use more RDMA buffers and turn off shared receive queues (SRQ); otherwise, the system can
still achieve the same maximum frame rate of about 127fps with 17 render cores, but after that
point, adding more cores causes performance to drop off quickly, with 384 render cores (48 render
nodes) being 2× slower. However, this is a moot point since faster frame rates will offer no tangible
benefit.

Modern graphics cards can produce four megapixel images at 60fps. As this image size is
roughly twice the HD image size, in our system the maximum frame rate would halve to about
60fps. Higher resolutions than 4 megapixels are usually achieved with a display wall consisting of
a cluster of nodes driving multiple screens. In this case, the maximum frame rate will be given
not by the time to transmit an entire image, but by the time it takes for a single display node to
receive its share of the image. Assuming each node renders 4 megapixels, and the load balancing
and rendering continue to scale, the frame rate will thus stay at 60fps, regardless of the resolution
of the display wall.

Since three copy threads are able to keep up with the receiving thread, and the load balancer
process is also running on the same node, there are three unused cores on the tested platform. If
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data is replicated across the nodes then these three cores can be used for a render process. This
render process will also benefit from being able to use the higher-speed shared memory for its MPI
communication with the display and load balancer instead of the slower InfiniBand. However, if
DC is required, then it will not be possible to run any render processes on the same node since
those render processes will be competing with the display and load balancer for scarce network
bandwidth and this will much more quickly saturate the network port and result in much lower
maximum frame rates.

With modern hardware and software, the described system can ray trace massive models at real-
time frame rates on a cluster and even show interactive to real-time rates when rendering distributed
geometry using a small cache. The system is one to two orders of magnitude faster than previous
cluster ray tracing implementations, which used both slower hardware and algorithms [12, 40], or
had equivalent hardware but did not scale to as many nodes or to high frame rates [6]. Compared to
compositing approaches, the system can achieve about a 4× improvement in the maximum frame
rate for same size non-empty images compared to the state of the art [19] and can also handle
advanced shading effects for improved visualization.

6 Conclusion

Parallel rendering methods for generating images from visualizations are an important area of
research. In this report, a general framework for parallel rendering was presented and applied to
both geometry rendering and volume rendering. In the future, as HPV moves into the exascale
regime, parallel rendering methods will likely become more important as in situ methods require
parallel rendering and the send-image method of parallel display will scale better than the send-
geometry method. It is anticipated that GPUs will become integrated into compute nodes, which
offer another avenue for parallel rendering in HPV.
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Figure 6: Frame rate when varying cache size and the number of nodes in the ray casted RM and
Boeing data sets. The replicated data has almost perfect scaling until the display becomes network
bound. Performance scales very well with the Boeing data set and DC, even with a small cache,
because the working set is a fraction of the overall model. The scaling with the RM data set and
DC performs well until about 20–25fps is reached. Image source: Ize et al. [16].
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19



References

[1] C. Bajaj, I. Ihm, G. Joo, and S. Park. Parallel Ray Casting of Visibly Human on Distributed
Memory Architectures. In VisSym ’99 Joint EUROGRAPHICS-IEEE TVCG Symposium on
Visualization, pages 269–276, 1999.

[2] E. Wes Bethel, Hank Childs, and Charles Hansen, editors. High Performance Visualization—
Enabling Extreme-Scale Scientific Insight. Chapman & Hall, CRC Computational Science.
CRC Press/Francis–Taylor Group, Boca Raton, FL, USA, November 2012. http://www.

crcpress.com/product/isbn/9781439875728.

[3] James Bigler, James Guilkey, Christiaan Gribble, Charles Hansen, and Steven Parker. A Case
Study: Visualizing Material Point Method Data. In EUROVIS the Eurographics /IEEE VGTC
Symposium on Visualization, pages 299–306. EuroGraphics, 2006.

[4] James Bigler, Abe Stephens, and Steven G. Parker. Design for Parallel Interactive Ray Tracing
Systems. In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, pages 187–
196, 2006.

[5] Carson Brownlee, John Patchett, Li-Ta Lo, David DeMarle, Christopher Mitchell, James
Ahrens, and Charles Hansen. A Study of Ray Tracing Large-Scale Scientific Data in Par-
allel Visualization Applications. In Proceedings of the Eurographics Workshop on Parallel
Graphics and Visualization, EGPGV ’12, pages 51–60. Eurographics Association, 2012.

[6] Brian Budge, Tony Bernardin, Jeff A. Stuart, Shubhabrata Sengupta, Kenneth I. Joy, and
John D. Owens. Out-of-Core Data Management for Path Tracing on Hybrid Resources. Com-
puter Graphics Forum, 28(2):385–396, 2009.

[7] Hank Childs, Mark A. Duchaineau, and Kwan-Liu Ma. A Scalable, Hybrid Scheme for Vol-
ume Rendering Massive Data Sets. In Eurographics Symposium on Parallel Graphics and
Visualization, pages 153–162, May 2006.
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